Advertisement

 

 

HIV-1 Capsid Function is Regulated by Dynamics: Quantitative Atomic-Resolution Insights by Integrating Magic-Angle-Spinning NMR, QM/MM, and MD.

HIV-1 Capsid Function is Regulated by Dynamics: Quantitative Atomic-Resolution Insights by Integrating Magic-Angle-Spinning NMR, QM/MM, and MD.
Author Information (click to view)

Zhang H, Hou G, Lu M, Ahn J, Byeon IL, Langmead CJ, Perilla JR, Hung I, Gor'kov PL, Gan Z, Brey WW, Case DA, Schulten K, Gronenborn AM, Polenova T,


Zhang H, Hou G, Lu M, Ahn J, Byeon IL, Langmead CJ, Perilla JR, Hung I, Gor'kov PL, Gan Z, Brey WW, Case DA, Schulten K, Gronenborn AM, Polenova T, (click to view)

Zhang H, Hou G, Lu M, Ahn J, Byeon IL, Langmead CJ, Perilla JR, Hung I, Gor'kov PL, Gan Z, Brey WW, Case DA, Schulten K, Gronenborn AM, Polenova T,

Advertisement
Share on FacebookTweet about this on TwitterShare on LinkedIn

Journal of the American Chemical Society 2016 Oct 5()

Abstract

HIV-1 CA capsid protein possesses intrinsic conformational flexibility, which is essential for its assembly into conical capsids and interactions with host factors. CA is dynamic in the assembled capsid, and residues in functionally important regions of the protein undergo motions spanning many decades of timescales. Chemical shift anisotropy (CSA) tensors, recorded in magic-angle-spinning NMR experiments, provide direct residue-specific probes of motions on nano- to microsecond timescales. We combined NMR, MD, and Density-Functional-Theory calculations, to gain quantitative understanding of internal backbone dynamics in CA assemblies, and found that the dynamically averaged (15)N CSA tensors calculated by this joined protocol are in remarkable agreement with experiment. Thus, quantitative atomic-level understanding of the relationships between CSA tensors, local backbone structure and motions in CA assemblies is achieved, demonstrating the power of integrating NMR experimental data and theory for characterizing atomic-resolution dynamics in biological systems.

Submit a Comment

Your email address will not be published. Required fields are marked *

7 + 20 =

[ HIDE/SHOW ]