Advertisement

 

 

P-glycoprotein (ABCB1) activity decreases raltegravir disposition in primary CD4+P-gphigh cells and correlates with HIV-1 viral load.

Author Information (click to view)

Minuesa G, Arimany-Nardi C, Erkizia I, Cedeño S, Moltó J, Clotet B, Pastor-Anglada M, Martinez-Picado J,


Minuesa G, Arimany-Nardi C, Erkizia I, Cedeño S, Moltó J, Clotet B, Pastor-Anglada M, Martinez-Picado J, (click to view)

Minuesa G, Arimany-Nardi C, Erkizia I, Cedeño S, Moltó J, Clotet B, Pastor-Anglada M, Martinez-Picado J,

Advertisement
Share on FacebookTweet about this on TwitterShare on LinkedIn

The Journal of antimicrobial chemotherapy 2016 6 21() pii

Abstract
OBJECTIVES
To evaluate the role of P-glycoprotein (P-gp) and multidrug-resistant-protein 1 (MRP1) on raltegravir intracellular drug disposition in CD4+ T cells, investigate the effect of HIV-1 infection on P-gp expression and correlate HIV-1 viraemia with P-gp activity in primary CD4+ T cell subsets.

METHODS
The cellular accumulation ratio of [(3)H]raltegravir was quantified in CD4+ T cell lines overexpressing either P-gp (CEM-P-gp) or MRP1 (CEM-MRP1) and in primary CD3+CD4+ T cells with high (P-gp(high)) and low P-gp activity (P-gp(low)); inhibition of efflux transporters was confirmed by the intracellular retention of calcein-AM. The correlation of P-gp activity with HIV-1 viraemia was assessed in naive and memory T cell subsets from 21 HIV-1-infected treatment-naive subjects.

RESULTS
[(3)H]Raltegravir cellular accumulation ratio decreased in CEM-P-gp cells (P < 0.0001). XR9051 (a P-gp inhibitor) and HIV-1 PIs reversed this phenomenon. Primary CD4+P-gp(high) cells accumulated less raltegravir (38.4% ± 9.6%) than P-gp(low) cells, whereas XR9051 also reversed this effect. In vitro HIV-1 infection of PBMCs and stimulation of CD4+ T cells increased P-gp mRNA and P-gp activity, respectively, while primary CD4+P-gp(high) T cells sustained a higher HIV-1 replication than P-gp(low) cells. A significant correlation between HIV-1 viraemia and P-gp activity was found in different CD4+ T cell subsets, particularly memory CD4+ T cells (r = 0.792, P < 0.0001). CONCLUSIONS
Raltegravir is a substrate of P-gp in CD4+ T cells. Primary CD4+P-gp(high) T cells eliminate intracellular raltegravir more readily than P-gp(low) cells and HIV-1 viraemia correlates with P-gp overall activity. Specific CD4+P-gp(high) T cell subsets could facilitate the persistence of viral replication in vivo and ultimately promote the appearance of drug resistance.

Submit a Comment

Your email address will not be published. Required fields are marked *

twelve + 17 =

[ HIDE/SHOW ]