More than 40,000 patients worldwide die from esophageal cancer annually. The 5-year survival rate of patients is only approximately 15%-20%, and thus there is an ongoing need to improve diagnosis and treatment of esophageal cancer. Breast cancer type 1 susceptibility protein (BRCA1)-associated protein (BAP1) is a marker of poor prognosis in several cancers, including uveal melanoma, renal cell carcinoma, cholangiocarcinoma, non-small cell lung cancer, and colorectal cancer. BAP1 mutations are early and rare events in esophageal carcinoma, but the involvement of BAP1 in progression of esophageal carcinoma is unclear. Here, we report that cell proliferation and migration were significantly enhanced in esophageal carcinoma ECA109 cells overexpressing BAP1, while they were diminished upon BAP1 knockdown. In addition, expression of KLF5, CyclinD1, and FGF-BP1 was increased by BAP1 overexpression and decreased by BAP1 knockdown. Our data suggest that BAP1 promotes cell proliferation and migration, and enhances the expression of KLF5 and its downstream genes, including CyclinD1 and FGF-BP1, in the esophageal carcinoma cell line ECA109.