Advertisement

 

 

A Roadmap for Optimizing Asthma Care Management via Computational Approaches.

A Roadmap for Optimizing Asthma Care Management via Computational Approaches.
Author Information (click to view)

Luo G, Sward K,


Luo G, Sward K, (click to view)

Luo G, Sward K,

Advertisement
Share on FacebookTweet about this on TwitterShare on LinkedIn

JMIR medical informatics 2017 09 265(3) e32 doi 10.2196/medinform.8076
Abstract

Asthma affects 9% of Americans and incurs US $56 billion in cost, 439,000 hospitalizations, and 1.8 million emergency room visits annually. A small fraction of asthma patients with high vulnerabilities, severe disease, or great barriers to care consume most health care costs and resources. An effective approach is urgently needed to identify high-risk patients and intervene to improve outcomes and to reduce costs and resource use. Care management is widely used to implement tailored care plans for this purpose, but it is expensive and has limited service capacity. To maximize benefit, we should enroll only patients anticipated to have the highest costs or worst prognosis. Effective care management requires correctly identifying high-risk patients, but current patient identification approaches have major limitations. This paper pinpoints these limitations and outlines multiple machine learning techniques to address them, providing a roadmap for future research.

Submit a Comment

Your email address will not be published. Required fields are marked *

one × two =

[ HIDE/SHOW ]