Advertisement

 

 

Adenosine A2A receptor signaling affects IL-21/IL-22 cytokines and GATA3/T-bet transcription factor expression in CD4(+) T cells from a BTBR T(+) Itpr3tf/J mouse model of autism.

Adenosine A2A receptor signaling affects IL-21/IL-22 cytokines and GATA3/T-bet transcription factor expression in CD4(+) T cells from a BTBR T(+) Itpr3tf/J mouse model of autism.
Author Information (click to view)

Ahmad SF, Ansari MA, Nadeem A, Bakheet SA, Almutairi MM, Attia SM,


Ahmad SF, Ansari MA, Nadeem A, Bakheet SA, Almutairi MM, Attia SM, (click to view)

Ahmad SF, Ansari MA, Nadeem A, Bakheet SA, Almutairi MM, Attia SM,

Advertisement

Journal of neuroimmunology 2017 08 09311() 59-67 pii 10.1016/j.jneuroim.2017.08.002

Abstract

Autism is a complex heterogeneous neurodevelopmental disorder; previous studies have identified altered immune responses among individuals diagnosed with autism. An imbalance in the production of pro- and anti-inflammatory cytokines and transcription factors plays a role in neurodevelopmental behavioral and autism disorders. BTBR T(+) Itpr3tf/J (BTBR) mice are used as a model for autism, as they exhibit social deficits, communication deficits, and repetitive behaviors compared with C57BL/6J (B6) mice. The adenosine A2A receptor (A2AR) appears to be a potential target for the improvement of behavioral, inflammatory, immune, and neurological disorders. We investigated the effects of the A2AR antagonist SCH 5826 (SCH) and agonist CGS 21680 (CGS) on IL-21, IL-22, T-bet, T-box transcription factor (T-bet), GATA3 (GATA Binding Protein 3), and CD152 (CTLA-4) expression in BTBR mice. Our results showed that BTBR mice treated with SCH had increased CD4(+)IL-21(+), CD4(+)IL-22(+), CD4(+)GATA3(+), and CD4(+)T-bet(+) and decreased CD4(+)CTLA-4(+) expression in spleen cells compared with BTBR control mice. Moreover, CGS efficiently decreased CD4(+)IL-21(+), CD4(+)IL-22(+), CD4(+)GATA3(+), and CD4(+)T-bet(+) and increased CD4(+)CTLA-4 production in spleen cells compared with SCH-treated and BTBR control mice. Additionally, SCH treatment significantly increased the mRNA and protein expression levels of IL-21, IL-22, GATA3, and T-bet in brain tissue compared with CGS-treated and BTBR control mice. The augmented levels of IL-21/IL-22 and GATA3/T-bet could be due to altered A2AR signaling. Our results indicate that A2AR agonists may represent a new class of compounds that can be developed for use in the treatment of autistic and neuroimmune dysfunctions.

Submit a Comment

Your email address will not be published. Required fields are marked *

two × three =

[ HIDE/SHOW ]