Autoclaving rodent diets is common in laboratory animals, but autoclaving increases the formation of dietary advanced glycation end-products (AGE). We studied the effect of autoclaved (AC) diet alone or in combination with a diet high in bioavailable phosphorus on biochemistries of chronic kidney disease-mineral and bone disorder (CKD-MBD), intestinal gene expression, and oxidative stress.
Male CKD rats (Cy/+) and normal littermates were fed 1 of 3 diets: AC 0.7% phosphorus grain-based diet for 28 weeks (AC); AC diet for 17 weeks followed by non-autoclaved (Non-AC) 0.7% phosphorus casein diet until 28 weeks (AC + Casein); or Non-AC diet for 16 weeks followed by a Non-AC purified diet until 30 weeks (Non-AC + Casein).
AC diets contained ~3× higher AGEs and levels varied depending on the location within the autoclave. Rats fed the AC and AC + Casein diets had higher total AGEs and oxidative stress, irrespective of kidney function. Kidney function was more severely compromised in CKD rats fed AC or AC + Casein compared to Non-AC + Casein. There was a disease-by-diet interaction for plasma phosphorus, parathyroid hormone, and c-terminal fibroblast growth factor-23, driven by high values in the CKD rats fed the AC + Casein diet. Compared to Non-AC + Casein, AC and AC + Casein-fed groups had increased expression of receptor of AGEs and intestinal NADPH oxidase dual oxidase-2, independent of kidney function.
Autoclaving rodent diets impacts the progression of CKD and CKD-MBD, highlighting the critical importance of standardizing diets in experiments.

© 2020 S. Karger AG, Basel.