Ceramide synthases (CerSs) catalyze the formation of ceramides from sphingoid bases and acyl-CoA substrates. Increasing evidence suggests that cancer cells generally exhibit altered sphingolipid metabolism in the tumorigenesis of multiple cancers. However, there is no evidence that CerSs are associated with pancreatic ductal carcinoma (PDAC). In the present study, we examined CerS expression in clinical tissue and conducted data mining to investigate the clinical significance of CerSs in the TCGA-PAAD database. We found that high CerS6 expression positively correlated with progression and predicted worse prognosis in PDAC patients, establishing CerS6 as a potential biomarker for PDAC. Furthermore, CerS6 promoted cell proliferation, colony formation and invasion by producing C16-ceramide and was required for tumor formation. Mechanistically, AKT1 interacted with and phosphorylated FOXP3 at S418, which decreased the binding of FOXP3 to the CERS6 promoter and in turn induced CerS6 expression by reconstituting an activated state on the CERS6 promoter. The AKT1/FOXP3 axis mediated the CerS6 expression and promoted p53 mutant pancreatic tumorigenesis by producing excessive C16-ceramide, which induced the accumulation of mutant p53. Thus, our study explores the relationship between PI3K/AKT signaling and sphingolipid metabolism, revealing an oncogenic role for CerS6, which may represent a potential target for PDAC treatment.
Copyright © 2021. Published by Elsevier B.V.

Author