Polycystic ovary syndrome (PCOS) is a heterogeneous endocrinopathy and a leading cause of anovulatory infertility. Angiogenesis is vital for ovarian folliculogenesis. The expression of angiogenesis-associated genes/proteins is altered in the ovary of PCOS women. However, information on microRNAs (miRNAs) regulating their expression is limited. This study aims to identify dysregulated angiogenesis-related genes in the ovary of women with PCOS, to identify miRNAs regulating them, and to construct a miRNA-mRNA network associated with angiogenesis.
A comprehensive literature search and reanalysis of seven ovarian GEO microarray datasets were performed to identify differentially expressed angiogenesis-related genes in PCOS. These target genes were used to predict their regulating miRNAs by querying miRNA databases and their expression in the ovary was verified. Panther and STRING database were used for functional enrichment. Gene expression of shortlisted miRNAs was studied in granulosa cells using digital droplet PCR.
The miRNAs expressed in the ovary and potentially targeting dysregulated angiogenesis-related genes in PCOS were identified and those enriched in angiogenesis-related pathways, like VEGF, FGF, PI3K/Akt, Notch signaling, and ECM interaction were shortlisted. Analysis showed PI3K/Akt signaling was the most enriched pathway. MiR-218-5p, miR-214-3p, miR-20a-5p, and miR-140-3p associated with the PI3K/Akt pathway were found to be up-regulated in granulosa cells of women with PCOS.
By in silico analysis, we identified crucial dysregulated angiogenesis-related genes, the miRNA-mRNA interactions, and signaling pathways involved in impaired follicular angiogenesis in PCOS. This work provides a novel insight into the mechanism of aberrant ovarian angiogenesis contributing to PCOS pathophysiology.

© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.