Traditional Chinese medicine was widely used in China since its definite effects and therapy. The components of TCM were absorbed into the circle system as the format of prototypes or metabolites, which contributed to the therapy or side effects. Declaring the functional changes in this process was of great importance to the clinical applications. In this work, an integrated strategy based on metabolites’ profiling and network pharmacology was proposed for exploring the pharmacological changes of compounds in vivo. Arctiin, the main component in Fructus Arctii with various kinds of bioactivities, was used as an example. An ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry and metabolynx™software was applied to characterize the metabolites of arctiin in rats at a dosage of 100 mg/kg; network pharmacology was applied to characterize the functional changes. As a result, fifty-three metabolites (32 in plasma, 40 in urine, 19 in bile, 20 in feces, 1 in brain, 12 in liver and 4 in lungs) were screened out and characterized, and 3 of them were unambitiously identified by comparison with standard substances. Among them, 38 metabolites were reported for the first time. It was found the major metabolic pathways of arctiin in rats were demethylation, lactone-opening and phase II conjugations with sulfate and glucuronide.It also confirmed that M14, M15, M18, M23, M22, M43 and M45 were the major circulating forms of arctiin in rats following oral administration. In addition to the above metabolic reactions, phase I reactions of hydrolysis, demethylation, dehydroxylation were also observed, and dehydrogenation were first revealed metabolic patterns of arctiin in rats. Meanwhile, in addition to the main targets of arctiin (MTOR, EGFR and MAPK14), its metabolites targeted additional 392 targets with additional functions of anti-hepatitis B or viral carcinogenesis (SRC, CAPS3, PIK3CA, CDK4, ESR1, MMP9 and ERBB2). The above results provided very important information for understanding the metabolism and functional changes of arctiinin vivo, and supporting data for further pharmacological evaluation. Our work also provided a newsight for elucidation of functional changes of TCMs in vivo.
Copyright © 2020 Elsevier B.V. All rights reserved.

Author