Advertisement

 

 

Assessment of gray and white matter structural alterations in migraineurs without aura.

Assessment of gray and white matter structural alterations in migraineurs without aura.
Author Information (click to view)

Zhang J, Wu YL, Su J, Yao Q, Wang M, Li GF, Zhao R, Shi YH, Zhao Y, Zhang Q, Lu H, Xu S, Qin Z, Cui GH, Li J, Liu JR, Du X,


Zhang J, Wu YL, Su J, Yao Q, Wang M, Li GF, Zhao R, Shi YH, Zhao Y, Zhang Q, Lu H, Xu S, Qin Z, Cui GH, Li J, Liu JR, Du X, (click to view)

Zhang J, Wu YL, Su J, Yao Q, Wang M, Li GF, Zhao R, Shi YH, Zhao Y, Zhang Q, Lu H, Xu S, Qin Z, Cui GH, Li J, Liu JR, Du X,

Advertisement
Share on FacebookTweet about this on TwitterShare on LinkedIn

The journal of headache and pain 2017 07 2118(1) 74 doi 10.1186/s10194-017-0783-5
Abstract
BACKGROUND
Migraine constitute a disorder characterized by recurrent headaches, and have a high prevalence, a high socio-economic burden and severe effects on quality of life. Our previous fMRI study demonstrated that some brain regions are functional alterations in migraineurs. As the function of the human brain is related to its structure, we further investigated white and gray matter structural alterations in migraineurs.

METHODS
In current study, we used surface-based morphometry, voxel-based morphometry and diffusion tensor imaging analyses to detect structural alterations of the white matter and gray matter in 32 migraineurs without aura compared with 32 age- and gender-matched healthy controls.

RESULTS
We found that migraineurs without aura exhibited significantly increased gray matter volume in the bilateral cerebellar culmen, increased cortical thickness in the lateral occipital-temporal cortex, decreased cortical thickness in the right insula, increased gyrification index in left postcentral gyrus, superior parietal lobule and right lateral occipital cortex, and decreased gyrification index in the left rostral middle frontal gyrus compared with controls. No significant change in white matter microstructure was found in DTI analyses.

CONCLUSION
The significantly altered gray matter brain regions were known to be associated with sensory discrimination of pain, multi-sensory integration and nociceptive information processing and were consistent with our previous fMRI study, and may be involved in the pathological mechanism of migraine without aura.

Submit a Comment

Your email address will not be published. Required fields are marked *

one × 1 =

[ HIDE/SHOW ]