Artemisia pollen grains are important aeroallergens worldwide. The amount of allergenic proteins produced by pollen, or pollen allergenicity, is regulated by both genes and the environment. As a result, even closely related plant taxa may release pollen with distinctly different allergen contents. Here, we determined the variability in atmospheric exposure to the major Artemisia pollen allergen, Art v 1, during the pollination seasons of two common species, i.e., A. vulgaris (early flowering species) and A. campestris (late flowering species), in Poznań, Poland (2013-2015). Artemisia pollen grains were collected using Hirst-type volumetric trap, while Art v 1 was collected by a two-stage cascade impactor (PM and PM air fractions) and quantified by immunoenzymatic analysis. The results showed that daily Art v 1 levels correlated significantly with mean daily concentrations of Artemisia pollen (from r = 0.426 to r = 0.949, depending on air fraction and peak of the season). Significant differences were observed between 1) the median pollen allergenicity in different seasons (from 2.5 to 4.7 pg Art v 1/pollen) and 2) the median pollen allergenicity in different peak periods of the season (from 1.8 to 6.7 pg Art v 1/pollen). During the late peak (flowering of A. campestris), the median pollen allergenicity was significantly higher (on average by 63%, p < 0.05) than that during A. vulgaris flowering. The highest mean seasonal pollen allergenicity was observed during the wettest season, while the lowest was observed during the driest season (from July-August). In summary, our study showed distinct differences in Artemisia pollen allergenicity, that were not only related to daily and seasonal variability, which may exceed 800% and 80%, respectively but also noticeable when two common Artemisia species were compared. Therefore, we argue that variability in pollen allergenicity (both seasonal and species-specific) should be considered in future studies assessing pollen exposure.
Copyright © 2020. Published by Elsevier B.V.