The authors sought to validate the navigated transcranial magnetic stimulation (nTMS)-based risk stratification model. The postoperative motor outcome in glioma surgery may be preoperatively predicted based on data derived by nTMS. The tumor-to-tract distance (TTD) and the interhemispheric resting motor threshold (RMT) ratio (as a surrogate parameter for cortical excitability) emerged as major factors related to a new postoperative deficit.
In this bicentric study, a consecutive prospectively collected cohort underwent nTMS mapping with diffusion tensor imaging (DTI) fiber tracking of the corticospinal tract prior to surgery of motor eloquent gliomas. The authors analyzed whether the following items were associated with the patient’s outcome: patient characteristics, TTD, RMT value, and diffusivity parameters (fractional anisotropy [FA] and apparent diffusion coefficient [ADC]). The authors assessed the validity of the published risk stratification model and derived a new model.
A new postoperative motor deficit occurred in 36 of 165 patients (22%), of whom 20 patients still had a deficit after 3 months (13%; n3 months = 152). nTMS-verified infiltration of the motor cortex as well as a TTD ≤ 8 mm were confirmed as risk factors. No new postoperative motor deficit occurred in patients with TTD > 8 mm. In contrast to the previous risk stratification, the RMT ratio was not substantially correlated with the motor outcome, but high RMT values of both the tumorous and healthy hemisphere were associated with worse motor outcome. The FA value was negatively associated with worsening of motor outcome. Accuracy analysis of the final model showed a high negative predictive value (NPV), so the preoperative application may accurately predict the preservation of motor function in particular (day of discharge: sensitivity 47.2%, specificity 90.7%, positive predictive value [PPV] 58.6%, NPV 86.0%; 3 months: sensitivity 85.0%, specificity 78.8%, PPV 37.8%, NPV 97.2%).
This bicentric validation analysis further improved the model by adding the FA value of the corticospinal tract, demonstrating the relevance of nTMS/nTMS-based DTI fiber tracking for clinical decision making.

Author