The hard tissues of animals, such as skeletons and teeth, are constructed by a biologically controlled process called biomineralization. In invertebrate animals, biominerals are considered important for their evolutionary success. These biominerals are hieratical biocomposites with excellent mechanical properties, and their formation has intrigued researchers for decades. Although proteins account for ~5 wt% of biominerals, they are critical players in biomineralization. With the development of high-throughput analysis methods, such as proteomics, biomineral protein data are rapidly accumulating, thus necessitating a refined model for biomineralization. This review focuses on biomineral proteomics in invertebrate animals to highlight the diversity of biomineral proteins (generally 40-80 proteins), and the results indicate that biomineralization includes thermodynamic crystal growth as well as intense extracellular matrix activity and/or vesicle transport. Biominerals have multiple functions linked to biological immunity and antipathogen activity. A comparison of proteomes across species and biomineral types showed that von Willebrand factor type A and epidermal growth factor, which frequently couple with other extracellular domains, are the most common domains. Combined with species-specific repetitive low complexity domains, shell matrix proteins can be employed to predict biomineral types. Furthermore, this review discusses the applications of biomineral proteomics in diverse fields, such as tissue regeneration, developmental biology, archeology, environmental science, and material science.
Copyright © 2018. Published by Elsevier B.V.