The third generation of methylenecyclopropane nucleoside analogs (MCPNAs) elicit an anti-viral effect against all three sub-classes of herpes viruses without inducing cytotoxicity in vitro. It has been previously established that the mechanism of action of MCPNAs is similar to that of ganciclovir (GCV) or acyclovir (ACV). However, the activation of MBX-2168, a third generation MCPNA, involves additional and unique enzymatic steps and this process has not been examined in virus-infected cells. To that end, herpes virus-infected cells were incubated with MBX-2168, synguanol, GCV, or ACV. Incubation of HCMV-infected cells with five times the EC of MBX-2168 (4.0 μM), synguanol (10.5 μM), or GCV (25 μM) resulted in a time-dependent increase in triphosphate accumulation reaching a maximum of 48.1 ± 5.5, 45.5 ± 2.5, and 42.6 ± 3.7 pmol/10 cells at 120 h, respectively. Additionally, half-lives of these compounds were similar in HCMV-infected cells (GCV-TP = 25.5 ± 2.7 h; MBX-2168-TP/synguanol-TP = 23.0 ± 1.4 h). HSV-1-infected cells incubated with five times the EC of MBX-2168 (33.5 μM) or ACV (5.0 μM) demonstrated a time-dependent increase in triphosphate levels reaching a maximum of 12.3 ± 1.5 and 11.6 ± 0.7 pmol/10 cells at 24 h, respectively. ACV-TP and MBX-2168-TP also had similar half-lives under these conditions (27.3 ± 4.8 h and 22.2 ± 2.2 h, respectively). We therefore conclude that although MBX-2168 does not follow the classical route of nucleoside analog activation, the metabolic profile of MBX-2168 is similar to other nucleoside analogs such as GCV and ACV that do.
Copyright © 2020. Published by Elsevier B.V.