A major drawback of oral treatment of inflammatory bowel disease (IBD) is the non-specific distribution of drugs during long-term treatment. Despite its effectiveness as an anti-inflammatory drug, curcumin (CUR) is limited by its low bioavailability in IBD treatment. Herein, a pH-sensitive composite hyaluronic acid/gelatin (HA/GE) hydrogel drug delivery system containing carboxymethyl chitosan (CC) microspheres loaded with CUR was fabricated for IBD treatment. The composition and structure of the composite system were optimized and the physicochemical properties were characterized using infrared spectroscopy, X-ray diffraction, swelling, and release behavior studies. In vitro, the formulation exhibited good sustained release property and the drug release rate was 65% for 50 h. In vivo pharmacokinetic experiments indicated that high level of CUR was maintained in the colon tissue for more than 24 h; it also played an anti-inflammatory role by evaluating the histopathological changes through hematoxylin and eosin (H&E), myeloperoxidase (MPO), and immunofluorescent staining. Additionally, the formulation substantially inhibited the level of the main pro-inflammatory cytokines of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) secreted by macrophages, compared to the control group. The pharmacodynamic experiment showed that the formulation group of CUR@gels had the best therapeutic effect on colitis in mice. The composite gel delivery system has potential for the effective delivery of CUR in the treatment of colitis. This study also provides a reference for the design and preparation of a new oral drug delivery system with controlled release behavior.
Copyright © 2018. Published by Elsevier B.V.

Author