Individuals with incomplete spinal cord injury (iSCI) demonstrate greater postural sway and increased dependency on vision to maintain balance compared to able-bodied individuals. Research on standing balance after iSCI has focused on the joint contribution of the lower limbs; however, inter-limb synchrony in quiet standing is a sensitive measure of individual limb contributions to standing balance control in other neurological populations. It is unknown if and how reduced inter-limb synchrony contributes to the poor standing balance of individuals with iSCI.
How does an iSCI affect inter-limb synchrony and weight-bearing symmetry in standing?
Eighteen individuals with non-progressive motor iSCI and 15 age- and sex-matched able-bodied individuals (M-AB) were included in the study. Participants stood in a standardized position on two adjacent force plates in eyes open and closed conditions for 70 s per condition. Net centre-of-pressure (COP) root mean square (RMS), net COP velocity, COP inter-limb synchrony (i.e. cross-correlation between left and right COP), and weight-bearing asymmetry (i.e. vertical force from each limb over total vertical force) were calculated. Muscle strength of the lower limbs was assessed with manual muscle testing.
Individuals with iSCI demonstrated reduced inter-limb synchrony when standing with eyes open and eyes closed, but did not differ to M-AB with respect to weight-bearing asymmetry. They also produced greater net COP RMS and velocity when compared to M-AB. Muscle strength of the two lower limbs demonstrated an overall asymmetry in individuals with iSCI.
Individuals with iSCI demonstrated impaired balance control as evidenced by reduced inter-limb synchrony and greater COP RMS and velocity compared to M-AB individuals. This increased understanding of how balance control is impaired following iSCI may inform balance assessment and intervention for this population. Future work examining the association between inter-limb synchrony and the occurrence of falls in iSCI is warranted.

Author