To investigate the roles of chemokine (C-C motif) ligand 8 (CCL8) in periodontal ligament during orthodontic tooth movement (OTM).
Bioinformatics analyzed 100 genes in human periodontal ligament cells that were most upregulated after 48 hours of mechanical stress, and these genes were classified through GO and KEGG databases. Nickel-titanium closed-coil springs were placed between right first molar and incisors to produce 20 cN of orthodontic force in eight-week-old male SD rats for 1 and 2 days, followed by immunohistochemical staining of CCL8. Human periodontal ligament fibroblasts (hPDLFs) were stimulated by 14% cyclic tension force (Flexcell FX-5000 T Tension System) or hypoxia conditions to mimic OTM for 1 and 2 days, then the resulting CCL8 were examined through ELISA. Scratching assay was performed by treating hPDLFs with different concentrations of CCL8 (1 ng/ml, 10 ng/ml, 100 ng/ml). The migration, proliferation, and adhesion abilities of 100 ng/ml CCL8-treated hPDLFs were also examined. qRT-PCR and western blot detected matrix metalloproteinase 3, periostin, and osteoprotegrin expressions of hPDLFs under 100 ng/ml CCL8.
Bioinformatic analysis demonstrated that CCL8 was upregulated after applying mechanical stress for 48 hours. CCL8 secretion showed upregulation after 24 hours of OTM applicationsin vivo and in vitro. CCL8-treated hPDLFs showed significant positive effects on cell proliferation and matrix metalloproteinase 3. It also inhibited periostin and osteoprotegrin expressions.
CCL8 was upregulated in periodontal ligament during initial stage of OTM. Although CCL8 in human periodontal ligaments showed no significant effects on cell migration ability, it did enhance cell proliferation and osteoclastogenesis.

Copyright © 2021 Elsevier Ltd. All rights reserved.

Author