Chronic neurological diseases are a major cause of mortality and morbidity in the world. With increasing life expectancy in the developing world, the incidence and prevalence of these diseases are predicted to rise even further. This has also contributed to an increase in disability-adjusted life years (DALYs) for noncommunicable diseases. Treatment for such diseases also poses a challenge with multiple genetic and epigenetic factors leading to a varied outcome. Personalization of treatment is one way that treatment outcome/prognosis of disease can be improved, and pharmacogenomics plays a significant role in this context.
This article reviewed the evidence pertaining to the association of genetic and epigenetic markers with major neurological disorders like multiple sclerosis (MS), Alzheimer’s disease (AD), and Parkinson’s disease (PD), which are a major source of burden among neurological disorders. Types of studies included are peer-reviewed original research articles from the PubMed database (1999-2018).
This study compiled data regarding specific genetic and epigenetic markers with a significant correlation between the clinical diagnosis of the disease and prognosis of therapy from 65 studies. In a single platform, this review highlights the clues to some vital questions, such as why interferon beta (IFN-β) therapy fails to improve symptoms in all MS patients? why cholinesterase inhibitors fail to improve cognitive impairment in a subset of people suffering from AD? or why some individuals on levodopa (L-DOPA) for PD suffer from side-effects ranging from dyskinesia to hallucination while others do not?
This article summarizes the genetic and epigenetic factors that may either require monitoring or help in deciding future pharmacotherapy in a patient suffering from MS, AD, and PD. As the health care system develops and reaches newer heights, we expect more and more of these biomarkers to be used as pharmacotherapeutic outcome indicators.

Author