Diabetes mellitus (DM) is a chronic inflammatory disease, which causes multiple complications. Diabetic retinopathy (DR) is among these complications and is a dominant cause of vision loss for diabetic patients. Numerous studies have shown that chrysin, a flavonoid, has many biological activities such as anti-oxidation and anti-inflammation. However, it is rarely used in ocular diseases. In this study, we examined the inhibitory effects of flavonoid on high glucose induced migration of chorioretinal endothelial cells (RF/6A cells) and its mechanism.
The viability of RF/6A cells treated with chrysin was examined with a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. The migration of RF/6A cells was assessed by the transwell migration and scratch wound assays. The expression of AKT, ERK, vascular endothelial growth factor (VEGF), HIF-1α and MMP-2 were determined by western blotting. To observe the mRNA expression of VEGF receptor (VEGFR), qRT-PCR, was utilized.
The results showed that chrysin can dose-dependently inhibit the RF/6A cell migration in vitro transwell and the scratch wound assays which are induced by high glucose. After pretreatment of RF/6A cells with different concentrations of chrysin, they did not produce any cytotoxicity in MTT assay. Moreover, chrysin down-regulated both phosphorylated AKT and ERK, as well as attenuated the expression levels of MMP-2. It also decreased the expression of the VEGF transcription factor and VEGF. Furthermore, it was shown that chrysin could suppress the protein and mRNA expression levels of VEGFR.
The results indicate that chrysin could down-regulate the phosphorylation of AKT, ERK and MMP-2 and reduce the effects of VEGF and VEGFR in a high glucose environment. It further inhibits the high glucose-induced migration of RE/6A cells. Therefore, chrysin may have the potential for visual protection.

References

PubMed