Carbon tetrachloride (CT) is highly toxic and recalcitrant in groundwater. In recent years, zero-valent aluminum (ZVAl) is highly reductive but limited by its surface passivation film. One of the effective ways to overcome this bottleneck is to add ligands. In this paper, compared with several other ligands, sodium citrate (SC), a natural organic ligand, was introduced to enhance microscale ZVAl (mZVAl) reactivity for the reductive degradation of CT. The results showed that the SC system could effectively reduce but not completely dechlorinate CT and electron utilization efficiency was as high as 94%. However, without ligands, mZVAl is chemically inert for CT degradation. Through SEM-EDS, BET, XRD, and XPS characterizations and H evolution experiments, enhanced mZVAl surface corrosion at the solid-liquid interface of mZVAl/SC system was verified. SC participated in the complexation corrosion reaction with surface inert film to form Al[Cit] complex, which made internal Al active sites exposed and then promoted mZVAl corrosion. In the five consecutive reuse experiments of mZVAl, CT can be completely degraded, which indicates that mZVAl, with the help of SC, has excellent sustainable utilization efficiency.
Copyright © 2021 Elsevier B.V. All rights reserved.

Author