Grading red blood cell (RBC) aggregation is important for the early diagnosis and prevention of related diseases such as ischemic cardio-cerebrovascular disease, type II diabetes, deep vein thrombosis, and sickle cell disease. In this study, a machine learning technique based on an adaptive analysis of ultrasonic radiofrequency (RF) echo signals in blood is proposed, and its feasibility for classifying RBC aggregation is explored. Using an adaptive empirical wavelet transform (EWT) analysis, the ultrasonic RF signals are decomposed into a series of empirical mode functions (EMFs); then, dominant empirical mode functions (DEMFs) are selected from the series. Six statistical characteristics, including the mean, variance, median, kurtosis, root mean square (RMS), and skewness are calculated for the locally normalized DEMFs, aiming to form primary feature vectors. Random forest (RDF) and support vector machine (SVM) classifiers are trained with the given feature vectors to obtain prediction models for RBC classification. Ultrasonic RF echo signals are acquired from five groups of six types of porcine blood samples with average numbers of aggregated RBCs of 1.04, 1.20, 1.83, 2.31, 2.72, and 4.28, respectively, to test the classification performance of the proposed method. The best subset with regard to the variance, kurtosis, and RMS is determined according to the maximum accuracy based on the RDF and SVM classifiers. The classification accuracies are 84.03 ± 3.13% for the RDF classifier, and 85.88 ± 2.99% for the SVM classifier. The mean classification accuracy of the SVM classifier is 1.85% better than that of the RDF classifier. In conclusion, the machine learning method is useful for the discrimination of varying degrees of RBC aggregation, and has potential for use in characterizing and monitoring the RBC aggregation in vessels.
Copyright © 2021 Elsevier B.V. All rights reserved.

Author