Canine distemper virus (CDV), a non-segmented single negative-stranded RNA (ssRNA), is the etiological agent of canine distemper. Canine distemper is a highly contagious and lethal viral disease in domestic dogs and wild carnivores. Study of the evolution of CDV presents an essential key to improve the vaccine efficacy. In this study, a total of 328 full-length CDV hemagglutinin (H) gene sequences were subjected to phylogenetic, amino acid mutations, and codon usage analysis. In accordance with previous study, CDV genotypes consisted of fifteen lineages. The unique amino acid substitution sites in each CDV lineages have been identified for the first time, including America-1 (Q330H), America-2 (I585S), Asia-1 (A359V), Asia-2 (H61R), Asia-3 (P108Q), Asia-4 (K213T), India-1/Asia-5(S497P), Arctic (S20L), Africa-1(N489S), Colombian (V41I), EWL (I44V), Europe (D560E), Europe-1/South America-1(K161Q), South America-2 (R580Q), and East African (S214A). Codon usage analysis indicated that H gene exhibited low codon usage bias and further neutrality plot analysis demonstrated that natural selection played a dominated role in driving CPV evolution. The effective number of codons (ENC) plots show that all the different sequences are below the standard curve, indicating that mutational pressure is not the only factor affecting CUB but other forces, including natural selection. The neutrality analysis showed that the slope of the regression line was 0.1501, indicating natural selection dominates directional mutation pressure in driving the codon usage pattern. In addition, nucleotide composition, relative synonymous codon usage value, dinucleotide content, and geographical distribution have been proven to influence the codon usage bias of the CDV H gene. The novel findings enhanced the understanding of CDV evolution.
Copyright © 2020. Published by Elsevier Ltd.

References

PubMed