Integrative medicine comprising a tumor-associated antigen vaccine and chemotherapeutic regimens has provided new insights into cancer therapy. In this study, the AB-type diblock copolymers poly(ethylene glycol)-polylactide (PEG-PLA) were subjected to the dispersion of poorly water-soluble molecules in aqueous solutions. The physicochemical behavior of the chemotherapeutic agent DBPR114 in the PEG-PLA-polymeric aqueous solution was investigated by dynamic light scattering (DLS) technology. In vitro cell culture indicated that replacing the organic solvent DMSO with PEG-PLA polymeric micelles could maintain the anti-proliferative effect of DBPR114 on leukemia cell lines. A murine tumor-associated antigen vaccine model was established in tumor-bearing mice to determine the effectiveness of these formulas in inducing tumor regression. The results demonstrated that the therapeutic treatments effectively reinforced each other via co-delivery of antitumor drug/antigen agents to synergistically integrate the efficacy of cancer therapy. Our findings support the potential use of polymeric micellar systems for aqueous solubilization and expansion of antitumor activity intrinsic to DBPR114 and tumor-associated antigen therapy.

Author