With dry eye, the ratio of cholesteryl ester (CE) to wax ester (WE) decreases substantially in meibum, but the functional and structural consequences of this change are speculative. The aim of this study is to confirm this finding and to bridge this gap in knowledge by investigating the effect of varying CE/WE ratios on lipid structure and thermodynamics.
Infrared spectroscopy was use to quantify CE and WE in human meibum and to measure hydrocarbon chain conformation and thermodynamics in a cholesteryl behenate, stearyl stearate model system.
The CE/WE molar ratio was 36% lower for meibum from donors with dry eye due to meibomian gland dysfunction compared with meibum from donors without dry eye. CE (5 mol %) dramatically increased the phase transition temperature of pure WE from -0.12 °C to 63 °C in the mixture. Above 5 mol % CB, the phase transition temperature increased linearly, from 68.5 °C to 85 °C. In the ordered state, CE caused an increase in lipid order from about 72% rotamers to about 86% rotamers. Above 10% CE, the hydrocarbon chains were arranged in a monoclinic geometry.
The CE/WE is lower in meibum from donors with dry eye due to meibomian-gland dysfunction. Major conformational changes in the hydrocarbon chains of wax and cholesteryl ester mixtures begin to occur with just 5% CB and above.
CE-WE interactions may be important for in understanding lipid layer structure and functional relationships on the surface of tears, skin and plants.

© 2020 The Authors.