Asparagine deamidation is a common posttranslational modification in which asparagine (Asn) is converted to aspartic acid or isoaspartic acid. By introducing a negative charge, deamidation could potentially impact the binding interface and biological activities of protein therapeutics. We identified a deamidation variant in moxetumomab pasudotox, an immunotoxin Fv fusion protein drug derived from a 38-kilodalton truncated Pseudomonas exotoxin A (PE38) for the treatment of hairy-cell leukemia. Although the deamidation site, Asn-358, was outside of the binding interface, the modification had a significant impact on the biological activity of moxetumomab pasudotox. Surprisingly, the variant eluted earlier than its unmodified form on anion exchange chromatography, which often leads to the conclusion that it has a higher positive charge. Here we describe the characterization of the deamidation variant with differential scanning calorimetry and hydrogen-deuterium exchange mass spectrometry, which revealed that the Asn-358 deamidation caused the conformational changes in the catalytic domain of the PE38 region. These results provide an explanation for why the deamidation affected the biological activity of moxetumomab pasudotox and suggest the approach that can be used for process control to ensure product quality and process consistency.
Copyright © 2020. Published by Elsevier Inc.

References

PubMed