Diabetic retinopathy is a chronic condition that causes vision loss if not detected early. In the early stage, it can be diagnosed with the aid of exudates which are called lesions. However, it is arduous to detect the exudate lesion due to the availability of blood vessels and other distractions. To tackle these issues, we proposed a novel exudates classification from the fundus image known as hybrid convolutional neural network (CNN)-based binary local search optimizer-based particle swarm optimization algorithm. The proposed method from this paper exploits image augmentation to enlarge the fundus image to the required size without losing any features. The features from the resized fundus images are extracted as a feature vector and fed into the feed-forward CNN as the input. Henceforth, it classifies the exudates from the fundus image. Further, the hyperparameters are optimized to reduce the computational complexities by utilization of binary local search optimizer (BLSO) and particle swarm optimization (PSO). The experimental analysis is conducted on the public ROC and real-time ARA400 datasets and compared with the state-of-art works such as support vector machine classifiers, multi-modal/multi-scale, random forest, and CNN for the performance metrics. The classification accuracy is high for the proposed work, and thus, our proposed outperforms all the other approaches.
© 2021. The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine.