Advertisement

 

 

Definition of the upper reference limit for thyroglobulin antibodies according to the National Academy of Clinical Biochemistry guidelines: comparison of eleven different automated methods.

Definition of the upper reference limit for thyroglobulin antibodies according to the National Academy of Clinical Biochemistry guidelines: comparison of eleven different automated methods.
Author Information (click to view)

D'Aurizio F, Metus P, Ferrari A, Caruso B, Castello R, Villalta D, Steffan A, Gaspardo K, Pesente F, Bizzaro N, Tonutti E, Valverde S, Cosma C, Plebani M, Tozzoli R,


D'Aurizio F, Metus P, Ferrari A, Caruso B, Castello R, Villalta D, Steffan A, Gaspardo K, Pesente F, Bizzaro N, Tonutti E, Valverde S, Cosma C, Plebani M, Tozzoli R, (click to view)

D'Aurizio F, Metus P, Ferrari A, Caruso B, Castello R, Villalta D, Steffan A, Gaspardo K, Pesente F, Bizzaro N, Tonutti E, Valverde S, Cosma C, Plebani M, Tozzoli R,

Advertisement
Share on FacebookTweet about this on TwitterShare on LinkedIn

Auto- immunity highlights 2017 06 198(1) 8 doi 10.1007/s13317-017-0096-3

Abstract
PURPOSE
In the last two decades, thyroglobulin autoantibodies (TgAb) measurement has progressively switched from marker of thyroid autoimmunity to test associated with thyroglobulin (Tg) to verify the presence or absence of TgAb interference in the follow-up of patients with differentiated thyroid cancer. Of note, TgAb measurement is cumbersome: despite standardization against the International Reference Preparation MRC 65/93, several studies demonstrated high inter-method variability and wide variation in limits of detection and in reference intervals. Taking into account the above considerations, the main aim of the present study was the determination of TgAb upper reference limit (URL), according to the National Academy of Clinical Biochemistry guidelines, through the comparison of eleven commercial automated immunoassay platforms.

METHODS
The sera of 120 healthy males, selected from a population survey in the province of Verona, Italy, were tested for TgAb concentration using eleven IMA applied on as many automated analyzers: AIA-2000 (AIA) and AIA-CL2400 (CL2), Tosoh Bioscience; Architect (ARC), Abbott Diagnostics; Advia Centaur XP (CEN) and Immulite 2000 XPi (IMM), Siemens Healthineers; Cobas 6000 (COB), Roche Diagnostics; Kryptor (KRY), Thermo Fisher Scientific BRAHMS, Liaison XL (LIA), Diasorin; Lumipulse G (LUM), Fujirebio; Maglumi 2000 Plus (MAG), Snibe and Phadia 250 (PHA), Phadia AB, Thermo Fisher Scientific. All assays were performed according to manufacturers’ instructions in six different laboratories in Friuli-Venezia Giulia and Veneto regions of Italy [Lab 1 (AIA), Lab 2 (CL2), Lab 3 (ARC, COB and LUM), Lab 4 (CEN, IMM, KRY and MAG), Lab 5 (LIA) and Lab 6 (PHA)]. Since TgAb values were not normally distributed, the experimental URL (e-URL) was established at 97.5 percentile according to the non-parametric method.

RESULTS
TgAb e-URLs showed a significant inter-method variability. Considering the same method, e-URL was much lower than that suggested by manufacturers (m-URL), except for ARC and MAG. Correlation and linear regression were unsatisfactory. Consequently, the agreement between methods was poor, with significant bias in Bland-Altman plot.

CONCLUSIONS
Despite the efforts for harmonization, TgAb methods cannot be used interchangeably. Therefore, additional effort is required to improve analytical performance taking into consideration approved protocols and guidelines. Moreover, TgAb URL should be used with caution in the management of differentiated thyroid carcinoma patients since the presence and/or the degree of TgAb interference in Tg measurement has not yet been well defined.

Submit a Comment

Your email address will not be published. Required fields are marked *

19 − 14 =

[ HIDE/SHOW ]