Coronary artery disease (CAD) is a common fatal disease. At present, an accurate method to screen CAD is urgently needed. This study aims to provide optimal detection models for suspected CAD detection according to the differences in medical conditions, so as to assist physicians to make accurate judgments on suspected CAD patients.
Electrocardiogram (ECG) and phonocardiogram (PCG) signals of 32 CAD patients and 30 patients with chest pain and normal coronary angiograms (CPNCA) were simultaneously collected in this paper. For each subject, the ECG and PCG multi-domain features were extracted, and the results of Holter monitoring, echocardiography (ECHO), and biomarker levels (BIO) were obtained to construct a multi-modal feature set. Then, a hybrid feature selection method was developed using mutual information, recursive feature elimination, random forest, and weight of support vector machine to obtain the optimal feature subset. The support vector machine with nested cross-validation was used for classification.
Results showed that the Holter model achieved the best performance as a single-modal feature model with an accuracy of 82.67%. In terms of multi-modal feature models, PCG-Holter, PCG-Holter-ECHO, PCG-Holter-ECHO-BIO, and ECG-PCG-Holter-ECHO-BIO were the optimal bimodal, three-modal, four-modal, and five-modal models, with accuracies of 90.38%, 91.92%, 95.25%, and 96.67%, respectively. Among them, the ECG-PCG-Holter-ECHO-BIO model, which was constructed by combining ECG and PCG signals features with Holter, ECHO, and BIO examination results, achieved the best classification results with an average accuracy, sensitivity, specificity, and F1-measure of 96.67%, 96.67%, 96.67%, and 96.64%, respectively.
The study indicated that multi-modal feature fusion and hybrid feature selection can obtain more effective information for CAD detection and provide reference for physicians to diagnose CAD patients.

© 2020 Institute of Physics and Engineering in Medicine.

References

PubMed