Atrial fibrillation (AF) is the leading cause of ischemic stroke and is one of the most common arrhythmias. Previous studies have shown that impaired diastolic functions, P wave dispersion (Pd), and prolonged atrial conduction times (ACT) are associated with increased incidence of atrial fibrillation (AF). The aim of this study was to evaluate diastolic functions, Pd, and ACT in fibromyalgia syndrome (FMS) patients to determine whether there is an increase in the risk of developing AF.
The study included a total of 140 female patients (70 FMS group, 70 healthy control group). Pd was evaluated using 12 lead electrocardiography (ECG), and diastolic functions and ACT with echocardiography. The ECG and echocardiographic evaluations were performed by different cardiologists blinded to the clinical information of the subjects.
There was no difference between the two groups in laboratory and clinical parameters. Patients with FMS had significantly higher echocardiographic parameters of ACT known as left-sided intra-atrial (13.9 ± 5.9 vs. 8.1 ± 1.8, p < 0.001), right-sided intra-atrial (21.9 ± 8.2 vs. 10.4 ± 3.5, p < 0.001) and interatrial [40 (25-64) ms vs. 23 (14-27) ms p < 0.001] electromechanical interval (EMI) compared with the control group. Pd was significantly greater in the FMS group compared with the control group [46 (29-62) ms vs. 32 (25-37) ms, p < 0.001]. In the FMS group, there was no significant relationship of the echocardiographic parameters of ACT, Pmax and Pd with age, E/A ratio and deceleration time (DT); while all these five parameters were significantly correlated with left atrial dimension, isovolumetric relaxation time (IVRT), fibromyalgia impact questionnaire (FIQ) and visual analogue scale (VAS). There was a strong correlation between FIQ and VAS and echocardiographic parameters of ACT, Pmax and Pd.
Impaired diastolic functions, an increase in Pd, and prolongation of ACT were observed in FMS. Current disorders are thought to be associated with an increased risk of AF in FMS. The risk of developing AF increases with the severity of FMS and clinical progression.

Author