Diabetic retinopathy (DR) is one of the leading causes of blindness in the world. DR represents the most common microvascular complication of diabetes, and its incidence is constantly rising. The complex interactions between inflammation, oxidative stress, and the production of free oxygen radicals caused by prolonged exposure to hyperglycemia determine the development of DR. Sirtuins (SIRTs) are a recently discovered class of 7 histone deacetylases involved in cellular senescence, regulation of cell cycle, metabolic pathways, and DNA repair. SIRTs participate in the progress of several pathologies such as cancer, neurodegenerative and metabolic diseases. In DR, sirtuins 1,3,5 and 6 play an important role as they regulate the activation of the inflammatory response, insulin sensibility, and both glycolysis and gluconeogenesis. A wide spectrum of direct and indirect activators of SIRTs pathways (e.g. antagomiR, resveratrol, or glycyrrhizin) is currently being developed to treat the inflammatory cascade occurring in DR. We focuse on the main metabolic and inflammatory pathways involving SIRTs and DR, as well as recent evidence on SIRTs activators that may be employed as novel therapeutic approaches to DR.
Copyright © 2021. Published by Elsevier Inc.

Author