Poor dietary habits contribute to the obesity pandemic and related cardiovascular diseases but the respective impact of high saturated fat versus added sugar consumption remains debated. Herein, we aimed to disentangle the individual role of dietary fat versus sugar in cardiometabolic disease progression.
We fed pro-atherogenic LDLrApoB mice either a low-fat/high-sucrose (LFHS) or a high-fat/low-sucrose (HFLS) diet for 24 weeks. Weekly body weight gain was registered. 16S rRNA gene-based gut microbial analysis was performed to investigate gut microbial modulations. Intraperitoneal insulin (ipITT) and oral glucose tolerance test (oGTT) were conducted to assess glucose homeostasis and insulin sensitivity. Cytokines were assessed in fasted plasma, epididymal white adipose tissue and liver lysates. Heart function was evaluated by echocardiography. Aortic atheroma lesions were quantified according to the en face technique.
HFLS feeding increased obesity, insulin resistance and dyslipidemia compared to LFHS feeding. Conversely, high sucrose consumption decreased gut microbial diversity while augmenting inflammation and the adaptative immune defense against metabolic endotoxemia and reduced macrophage cholesterol efflux capacity. This led to more severe cardiovascular complications as revealed by remarkably high level of atherosclerotic lesions and the early development of cardiac dysfunction in LFHS vs HFLS fed mice.
We uncoupled obesity-associated insulin resistance from cardiovascular diseases and provided novel evidence that dietary sucrose, not fat, is the main driver of metabolic inflammation accelerating severe atherosclerosis in hyperlipidemic mice.
Copyright © 2020 Elsevier B.V. All rights reserved.
About The Expert
Laís R Perazza
Patricia L Mitchell
Benjamin A H Jensen
Noëmie Daniel
Marjorie Boyer
Thibault V Varin
Rihab Bouchareb
Renato T Nachbar
Michaël Bouchard
Mylène Blais
Andréanne Gagné
Philippe Joubert
Gary Sweeney
Denis Roy
Benoit J Arsenault
Patrick Mathieu
André Marette
References
PubMed