Zika virus (ZIKV) infection is associated with the birth defect microcephaly and Guillain-Barré syndrome in adults. There is no approved vaccine or specific antiviral agent against ZIKV. ZFD-10, a novel structural skeleton of 1H-pyridazino[4,5-b]indol-4(5H)-one, was firstly synthesized and discovered to be a potent anti-ZIKV inhibitor with very low cytotoxicity. ZFD-10’s anti-ZIKV potency is independent of cell lines and ZFD-10 mainly targets the post-entry stages of ZIKV life cycle. Time-of-addition and time-of-withdrawal assays showed that 10 μM ZFD-10 displayed the ability to decrease mainly at the RNA level and weakly the viral progeny particle load. Furthermore, ZFD-10 could protect ZIKV NS5 from thermal unfolding and aggregation and increase the Tagg value of ZIKV NS5 protein from 44.6 to 49.3 °C, while ZFD-10 dose-dependently inhibits ZIKV NS5 RdRp activity using in vitro RNA polymerase assays. Molecular docking study suggests that ZFD-10 affects RdRp enzymatic function through interfering with the fingers and thumb subdomains. These results supported that ZFD-10’s cell-based anti-ZIKV activity is related to its anti-RdRp activity of ZIKV NS5. The in vivo anti-ZIKV study shows that the middle-dose (4.77 mg/kg/d) of ZFD-10 protected mice from ZIKV infection and the viral loads of the blood, liver, kidney and brain in the middle-dose and high-dose (9.54 mg/kg/d) were significantly reduced compared to those of the ZIKV control. These results confirm that ZFD-10 has a certain antiviral effect against ZIKV infection in vivo.Copyright © 2023. Published by Elsevier B.V.