Advertisement

 

 

Disease-relevant signalling-pathways in head and neck cancer: Taspase1’s proteolytic activity fine-tunes TFIIA function.

Disease-relevant signalling-pathways in head and neck cancer: Taspase1’s proteolytic activity fine-tunes TFIIA function.
Author Information (click to view)

Gribko A, Hahlbrock A, Strieth S, Becker S, Hagemann J, Deichelbohrer M, Hildebrandt A, Habtemichael N, Wu Nsch D,


Gribko A, Hahlbrock A, Strieth S, Becker S, Hagemann J, Deichelbohrer M, Hildebrandt A, Habtemichael N, Wu Nsch D, (click to view)

Gribko A, Hahlbrock A, Strieth S, Becker S, Hagemann J, Deichelbohrer M, Hildebrandt A, Habtemichael N, Wu Nsch D,

Advertisement

Scientific reports 2017 11 027(1) 14937 doi 10.1038/s41598-017-14814-x
Abstract

Head and neck cancer (HNC) is the seventh most common malignancy in the world and its prevailing form, the head and neck squamous cell carcinoma (HNSCC), is characterized as aggressive and invasive cancer type. The transcription factor II A (TFIIA), initially described as general regulator of RNA polymerase II-dependent transcription, is part of complex transcriptional networks also controlling mammalian head morphogenesis. Posttranslational cleavage of the TFIIA precursor by the oncologically relevant protease Taspase1 is crucial in this process. In contrast, the relevance of Taspase1-mediated TFIIA cleavage during oncogenesis of HNSCC is not characterized yet. Here, we performed genome-wide expression profiling of HNSCC which revealed significant downregulation of the TFIIA downstream target CDKN2A. To identify potential regulatory mechanisms of TFIIA on cellular level, we characterized nuclear-cytoplasmic transport and Taspase1-mediated cleavage of TFIIA variants. Unexpectedly, we identified an evolutionary conserved nuclear export signal (NES) counteracting nuclear localization and thus, transcriptional activity of TFIIA. Notably, proteolytic processing of TFIIA by Taspase1 was found to mask the NES, thereby promoting nuclear localization and transcriptional activation of TFIIA target genes, such as CDKN2A. Collectively, we here describe a hitherto unknown mechanism how cellular localization and Taspase1 cleavage fine-tunes transcriptional activity of TFIIA in HNSCC.

Submit a Comment

Your email address will not be published. Required fields are marked *

1 × 5 =

[ HIDE/SHOW ]