Known as one of the most sophisticated systems of the human body, the nervous system consists of neural cells and controls all parts of the body. It is closely related to the immune system. The effects of inflammation and immune reactions have been observed in the pathogenesis of some neurological disorders. Defined as the gene expression regulators, miRNAs participate in cellular processes. miR-146a is a mediator in the neuroimmune system, leaving substantial effects on the homeostasis of immune and brain cells, neuronal identities acquisition, and immune responses regulation in the nervous system. Its positive efficiency has been proven in modulating inflammatory reactions, hemorrhagic complications, and pain. Moreover, the miR-146a targets play a key role in the pathogenesis of these illnesses. Based on the performance of its targets, miR-146a can have various effects on the disease progress. The abnormal expression/function of miR-146a has been reported in neuroinflammatory disorders. There is research evidence that this molecule qualifies as a desirable biomarker for some disorders and can even be a therapeutic target. This study aims to provide a meticulous review regarding the roles of miR-146a in the pathogenesis and progression of several neuroinflammatory disorders such as multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer’s disease, temporal lobe epilepsy, and ischemic stroke, etc. The study also considers its eligibility for use as an ideal biomarker and therapeutic target in these diseases. The awareness of these mechanisms can facilitate the disease management/treatment, lead to patients’ amelioration, improve the quality of life, and mitigate the risk of death.
Copyright © 2021. Published by Elsevier B.V.