Electroacupuncture (EA) has been used to treat neuropathic pain induced by peripheral nerve injury (PNI) by applying an electrical current to acupoints with acupuncture needles. However, the mechanisms by which EA treats pain remain indistinct. High P2X4 receptor (P2X4R) expression levels demonstrate a notable increase in hyperactive microglia in the ipsilateral spinal dorsal horn following PNI. In order to demonstrate the possibility that EA analgesia is mediated in part by P2X4R in hyperactive microglia, the present study performed mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) tests in male Sprague‑Dawley rats that had undergone spinal nerve ligation (SNL). The expression levels of spinal P2X4R were determined using reverse transcription‑quantitative PCR, western blotting analysis and immunofluorescence staining. Furthermore, spontaneous excitatory postsynaptic currents (sEPSCs) were recorded using whole‑cell patch clamp to demonstrate the effect of EA on synaptic transmission in rat spinal substantia gelatinosa (SG) neurons. The results of the present study demonstrated that EA increased the MWT and TWL and decreased overexpression of P2X4R in hyperactive microglia in SNL rats. Moreover, EA attenuated the frequency of sEPSCs in SG neurons in SNL rats. The results of the present study indicate that EA may mediate P2X4R in hyperactive spinal microglia to inhibit nociceptive transmission of SG neurons, thus relieving pain in SNL rats.
For latest news and updates