Dry eye disease (DED) is a complex disease with multiple etiologies and variable symptoms, having ocular surface inflammation as its key pathophysiologic step. Despite advances in our understanding of DED, significant knowledge gaps remain. Advances are limited in part due to the lack of informative animal models. The authors recently reported on a method of DED induced by injecting all orbital lacrimal gland (LG) tissues with the lectin concanavalin A. Here, we report a novel model of aqueous-deficient DED based on the surgical resection of all orbital LG (dacryoadenectomy) tissues. Both methods use rabbits because of their similarity to human eyes in terms of the size and structure of the ocular surface. One week after removal of the nictitating membrane, the orbital superior LG was surgically removed under anesthesia, followed by removal of the palpebral superior LG, and finally removal of the inferior LG. Dacryoadenectomy induced severe DED, evidenced by a marked reduction in the tear break up time test and the Schirmer’s tear test, and significantly increased tear osmolarity and rose bengal staining. Dacryoadenectomy-induced DED lasted at least eight weeks. There were no complications and animals tolerated the procedure well. The technique can be mastered relatively easily by those with adequate surgical experience and appreciation of the relevant rabbit anatomy. Since this model recapitulates the features of human aqueous-deficient DED, it is suitable for studies of ocular surface homeostasis, DED, and candidate therapeutics.