Influenza virus B belongs to the family Orthomyxoviridae with segmented negative-sense RNA genomes. Since 1970s, influenza B has diverged intoVictoria and Yamagata, which differs in antigenic and evolutionary characteristics. Yet, molecular-epidemiological information of influenza B from developing nations is limited. In central Vietnam, influenza A subtype-specific circulation pattern and clinical characteristics were previously described. However, molecular evolutionary characteristics of influenza B has not been discussed to date. We utilized the influenza B positives obtained from paediatric ARI surveillance during 2007-2013. Influenza B HA and NA genes were amplified, sequenced, and phylogenetic/molecular evolutionary analysis was performed using Maximum Likelihood and Bayesian MCMC. Phylodynamics analysis was performed with Bayesian Skyline Plot (BSP). Furthermore, we performed selection pressure analysis and estimated N-glycosylation sites. In the current study, overall positive rate for influenza B was 3.0%, and Victoria lineage immediately became predominant in post-A/H1N1pdm09 period. The noticeable shift in Victoria lineage WHO Group occurred. With respect to the evolutionary rate (substitutions/site/year), Victoria lineage HA gene was evolving faster than Yamagata lineage (2.43 × 10 vs 2.00 × 10). Furthermore, the evolutionary rate of Victoria Group 5 was greater than Group 1. BSP presented the rapid growth in Effective Population Size (EPS) of Victoria lineage occurred soon after the 1st A/H1N1pdm09 case was detected whereas the EPS of Yamagata lineage was stable for both genes. N-glycosylation pattern between lineages and among WHO Groups were slightly different, and HA gene had a total of 6 amino acid substitutions under positive section pressure (4 for Victoria and 2 for Yamagata). The current results highlight the importance of Victoria lineage in post-A/H1N1pdm09 period. Difference in evolutionary characteristics and phylodynamics may indicate lineage and WHO Group-specific evolutionary dynamics. It is necessary to further continue the molecular-epidemiological surveillance in local setting to gain a better understanding of local evolutionary characteristics of influenza B strains.
Copyright © 2019. Published by Elsevier B.V.

Author