Recently, natural exosomes have attracted attention as an ideal drug carrier to overcome the limitations of existing drug delivery systems which are toxicity induction and low cancer-targeting performance. In this study, we propose an exosome-based hybrid nanostructure (EHN) with improved targeting ability and therapeutic efficacy against colorectal cancer by using exosomes isolated from the tumor cell line as a drug carrier. The proposed EHN can have high biocompatibility by using exosomes, a biologically derived material, and show improved targeting performance by adding a tumor-targeting ligand (folic acid). In addition, the proposed EHN is capable of chemotherapy because doxorubicin, an anticancer drug, is encapsulated by the exosome with high efficiency, and it can induce hyperthermia therapy because of the magnetic nanoparticles (MNPs) attached to the surface of exosomes. Through in vitro and in vivo experiments using a xenograft tumor mouse model, it was confirmed that the proposed EHN could exhibit increased apoptosis and excellent tumor growth inhibition ability. Therefore, the proposed EHN is expected to overcome the limitations of existing drug delivery systems and be utilized as an effective drug delivery system in cancer treatment.
Copyright © 2021 Elsevier B.V. All rights reserved.