It is believed that tubulo-interstitial fibrosis and atrophy in diabetic patients are directly associated with the progression of chronic kidney disease, CKD. AIF is one of the crucial factors responsible for mitochondrial apoptosis, however, it can also promote cell survival independently from its role in apoptosis, and therefore can be potentially used as a tool in prevention of the onset of CKD in diabetic patients. Our aim was to investigate the significance of AIF expression in the development of CKD by observing the expression of AIF in 2 weeks’ and 2 months’ kidneys of diabetic rats compared to their controls.
Male Sprague-Dawley rats were treated with 55 mg/kg streptozotocin (model of type 1 diabetes mellitus; DM group) or citrate buffer (control). After 2 weeks and 2 months kidney samples were collected and analysed in different renal areas.
Characteristic morphologic changes were found between the 2 months’ control and 2 months’ diabetic groups. Those changes, including fibrosis and possible replacement of podocytes with connective tissue were mainly present in the glomeruli. AIF expression was seen in the both cortex, and in the collecting ducts of the medulla. Strong intensity of AIF expression was seen in proximal and distal convoluted tubules in both diabetic groups. In the control groups the glomeruli showed no AIF staining but moderate staining was seen in both diabetic groups. Overall, the percentage of AIF positive cells in the glomeruli was the lowest. The greatest rise in cell positivity was displayed from the 2 weeks’ control group to 2 weeks’ diabetes group (38 %) in glomeruli. The cell positivity of the 2 weeks’ diabetic group is significantly reduced to 18 % in the 2 months’ diabetic group in glomeruli. A similar pattern was seen in the proximal tubular cells (92 % positivity 2 weeks diabetic groups; 89 % positivity 2 months diabetic groups), as well as in the distal tubules. The highest percentage of AIF positive cells was seen in the collecting ducts, more than 80 % in all groups.
Our study provides insight into AIF expression pattern during short term diabetes model, confirming possible dual role of AIF, not only in apoptosis but also in cell function and homeostasis, and proving AIF as potential therapeutic target and marker of advancement of CKD.

Copyright © 2020 Elsevier GmbH. All rights reserved.

Author