Elevated fibroblast growth factor 23 (FGF23) levels are markers and potential mediators, of adverse outcomes in acute kidney injury (AKI). We recently identified glycerol-3-phosphate (G-3-P), a glycolysis byproduct, as a kidney-derived factor that circulates to bone and bone marrow and triggers FGF23 production in ischemic AKI. This kidney-to-bone signaling axis was further shown to require the conversion of G-3-P to lysophosphatidic acid (LPA) in bone marrow, followed by LPA signaling through the LPAR1 receptor. These findings highlight discrete steps potentially amenable to therapeutic targeting in conditions of FGF23 excess, although more work is required to determine the specificity and safety of targeting specific enzyme and receptor isoforms. Importantly, the initial metabolomic screen that identified a strong correlation between renal vein G-3-P and circulating FGF23 was conducted in human subjects undergoing elective catheterization, none with AKI. This raises the question of whether G-3-P might also modulate FGF23 homeostasis in patients with more mild or chronic decrements in kidney function, or under normal physiologic conditions – a question that is reinforced by a growing body of literature highlighting functional roles for a range of circulating metabolites traditionally thought to function exclusively inside cells.
© 2021 S. Karger AG, Basel.