The tail of the ventral tegmental area (tVTA) or rostromedial tegmental nucleus (RMTg) receives lateral habenula inputs and projects heavily to midbrain dopamine neurons. Midbrain dopamine and lateral habenula neurons participate in learning processes predicting the outcomes of actions, placing the tVTA in a critical location into prediction error pathways. tVTA GABA neurons show electrophysiological inhibition or activation after reward and aversive stimuli, respectively, and their predictive cues. tVTA molecular recruitment, however, is not elicited by all aversive stimuli. Indeed, precipitated opioid withdrawal, repeated footshocks or food restriction raise tVTA Fos expression, whereas various other unpleasant, stressful or painful stimuli does not elicit that molecular response. However, the basis of that difference remains unknown. In the present study, we tried to disentangle whether the tVTA c-Fos induction observed after food restriction was due to the aversive state of food restriction or to procedure-related reward prediction error. To this end, male Sprague-Dawley rats were food-restricted for 7-8 days. During this period, animals were handled and weighed every day before feeding. On the test day, rats underwent several behavioral procedures to explore the impact of food restriction and food-predictive cue exposure on tVTA c-Fos expression. We showed that food restriction per se was not able to recruit c-Fos in the tVTA. On the contrary, the food-predicting cues induced c-Fos locally in the absence of feeding, whereas the food-predicting cues followed by feeding evoked lower c-Fos expression. Overall, our results support the proposed involvement of the tVTA in reward prediction error.
Copyright © 2022. Published by Elsevier B.V.