Sepsis is a grievous health concern with limited understanding of its precise etiology. Although studies on sepsis have implicated the Warburg effect (mitigation of mitochondrial oxidative phosphorylation, as evident from aerobic glycolysis), we propose that an evolutionary perspective might further unravel its etiology. The endosymbiotic theory suggests that evolution of a eukaryotic cell is a consequence of the fruitful association between an archaea (Asgard) and an alphaproteobacterium (Rickettsia). We hypothesize that, during pathological conditions like sepsis, such endosymbiotic homeostasis between the two systems is perturbed. We underscore the fact (supported by in silico homology analyses) that during sepsis, the Asgard component of a cell is promoted to trigger aerobic glycolysis as well as the innate immune response (spearheaded by the TLR pathway), while suppressing the Rickettsia counterpart, thereby promoting the Warburg effect. It might be this discord between the two endosymbiotic partners (Asgard and Rickettsia-derived cellular components) that promotes sepsis.
Copyright © 2020 Elsevier Ltd. All rights reserved.