Adoptive cell therapy (ACT) using specific immune cells and stem cells has emerged as a promising treatment option that could complement traditional cancer therapies in the future. In particular, tumor-infiltrating lymphocytes (TILs) have been shown to be effective against solid tumors in various clinical trials. Despite the enormous disease burden and large number of premature deaths caused by colorectal cancer (CRC), studies on TILs isolated from tumor tissue of patients with CRC are still rare. To date, studies on ACT often lack controlled and comparable expansion processes as well as selected ACT-relevant T-cell populations. We describe a procedure for generating patient-specific TILs, which are prerequisites for clinical trials of ACT in CRC. The manufacturing and characteristics of these TILs differ in important modalities from TILs commonly used for this therapeutic approach. Tumor tissue samples were obtained from 12 patients undergoing surgery for primary CRC, predominantly with low microsatellite instability (pMMR-MSI-L). Tumors in the resected specimens were examined pathologically, and an approved volume of tumor tissue was transferred to a disposable perfusion bioreactor. Tissue samples were subjected to an automatically controlled and highly reproducible cultivation process in a GMP-conform, closed perfusion bioreactor system using starting medium containing interleukin-2 and interleukin-12. Outgrowth of TIL from tissue samples was initiated by short-term supplementation with a specific activation cocktail. During subsequent expansion, TILs were grown in interleukin-2-enriched medium. Expansion of TILs in a low-scaled, two-phase process in the Zellwerk ZRP bioreactor under hyperoxic conditions resulted in a number of approximately 2 × 10 cells. The expanded TILs consisted mainly (73%) of the ACT-relevant CD3/CD8 effector memory phenotype (CD45RO/CCR7). TILs harvested under these conditions exhibited high functional potential, which was confirmed upon nonspecific stimulation (interferon-γ, tumor necrosis factor-α cytokine assay).
Copyright © 2023 International Society for Cell & Gene Therapy. Published by Elsevier Inc. All rights reserved.