Methionine-dependency is a common feature of cancer cells, which cannot proliferate without constant inputs of exogenous methionine even in the presence of its precursor, homocysteine. The endogenous synthesis of methionine is catalyzed by methionine synthase, which transfers the methyl group of 5-methyltetrahydrofolate (5-methylTHF) to homocysteine in the presence of vitamin B12 (cobalamin, cbl). Diverse mechanisms can produce it, including somatic mutations, aberrant DNA methylation (epimutations) and altered expression of genes. Around twenty somatic mutations have been reported as a cause of methionine dependency. Some of them are contributors but not sufficient on their own to cause methionine dependency. Epigenetic invalidation of MMACHC gene expression triggers methionine dependency of the MeWo-LC1 melanoma cancer cell line. This epimutation is generated by aberrant antisense transcription of the adjacent gene PRDX1. Methionine dependency involves the abnormal expression of 1-CM genes in cancer stem cells. It is related to an increased demand for methionine and SAM, which is not compensated by the increased production of formate by glycine decarboxylase pathway in lung cancer tumor spheres. Tumor spheres of glioblastoma U251 are methionine-dependent through disruption of folate metabolism. The rescue of the growth of glioblastoma stem cells by folate shows the considerable importance to evaluate the influence of supplements and dietary intake of folate on the risk of tumor development, in particular in countries subjected to mandatory food fortification in folic acid. Dietary methionine restriction or the use of methioninase represent promising anticancer therapeutic strategies that deserve to be explored in combination with chemotherapy.
Copyright © 2020. Published by Elsevier B.V.

Author