Advertisement

 

 

Genetic Variants in Isolated Ebstein Anomaly Implicated in Myocardial Development Pathways.

Genetic Variants in Isolated Ebstein Anomaly Implicated in Myocardial Development Pathways.
Author Information (click to view)

Sicko RJ, Browne ML, Rigler SL, Druschel CM, Liu G, Fan R, Romitti PA, Caggana M, Kay DM, Brody LC, Mills JL,


Sicko RJ, Browne ML, Rigler SL, Druschel CM, Liu G, Fan R, Romitti PA, Caggana M, Kay DM, Brody LC, Mills JL, (click to view)

Sicko RJ, Browne ML, Rigler SL, Druschel CM, Liu G, Fan R, Romitti PA, Caggana M, Kay DM, Brody LC, Mills JL,

Advertisement
Share on FacebookTweet about this on TwitterShare on LinkedIn

PloS one 2016 Oct 2711(10) e0165174 doi 10.1371/journal.pone.0165174
Abstract

Ebstein anomaly (EA) is a rare heart defect in which the tricuspid valve is malformed and displaced. The tricuspid valve abnormalities can lead to backflow of blood from the right ventricle to the right atrium, preventing proper circulation of blood to the lungs. Although the etiology of EA is largely unresolved, increased prevalence of EA in those with a family history of congenital heart disease suggests EA has a genetic component. Copy number variants (CNVs) are a major source of genetic variation and have been implicated in a range of congenital heart defect phenotypes. We performed a systematic, genome-wide search for CNVs in 47 isolated EA cases using genotyping microarrays. In addition, we used a custom HaloPlex panel to sequence three known EA genes and 47 candidate EA genes. We identified 35 candidate CNVs in 24 (51%) EA cases. Rare sequence variants in genes associated with cardiomyopathy were identified in 11 (23%) EA cases. Two CNVs near the transcriptional repressor HEY1, a member of the NOTCH signaling pathway, were identified in three unrelated cases. All other candidate CNVs were each identified in a single case. At least 11 of 35 candidate CNVs include genes involved in myocardial development or function, including multiple genes in the BMP signaling pathway. We identified enrichment of gene sets involved in histone modification and cardiomyocyte differentiation, supporting the involvement of the developing myocardium in the etiology of EA. Gene set enrichment analysis also identified ribosomal RNA processing, a potentially novel pathway of altered cardiac development in EA. Our results suggest an altered myocardial program may contribute to abnormal tricuspid valve development in EA. Future studies should investigate abnormal differentiation of cardiomyocytes as a potential etiological factor in EA.

Submit a Comment

Your email address will not be published. Required fields are marked *

2 × 4 =

[ HIDE/SHOW ]