Canine malignant melanoma is a common cancer with a high mortality rate. Although previous studies have evaluated various aspects of this tumour, the exact mechanism of tumourigenesis remains unknown. Epigenetic mechanisms, such as DNA methylation, have recently gained attention as aetiological factors for neoplasia in humans. This study aimed to analyse genome-wide DNA methylation patterns in canine malignant melanoma based on next-generation sequencing data. A total of 76,213 CpG sites, including 29,482 sites in CpG islands (CGIs), were analysed using next-generation sequencing of methylation-specific signatures, obtained by sequential digestion with enzymes, to compare normal oral mucosal samples from four healthy dogs, four canine melanoma cell lines (3 oral cavity and 1 skin), and five clinical samples of oral canine melanoma. Malignant melanoma showed increased methylation at thousands of normally unmethylated CpG sites in CGIs and decreased methylation at normally methylated CpG sites in non-CGIs. Interestingly, the promoter regions of 81-393 genes were hypermethylated; 23 of these genes were present in all melanoma cell lines and melanoma clinical samples. Among these 23 genes, six genes with “sequence-specific DNA binding” annotation were significantly enriched, including three Homeobox genes-HMX2, TLX2, and HOXA9-that may be involved in the tumourigenesis of canine malignant melanoma. This study revealed widespread alterations in DNA methylation and a large number of hypermethylated genes in canine malignant melanoma.
Copyright © 2020 Elsevier Ltd. All rights reserved.

Author