Mutations in the gene , encoding for the transmembrane protein Anoctamin 5 (Ano5), have been identified to cause gnathodiaphyseal dysplasia (GDD) in humans, a skeletal disorder characterized by sclerosis of tubular bones, increased fracture risk and fibro-osseous lesions of the jawbones. To better understand the pathomechanism of GDD we have generated via Crispr/CAS9 gene editing a mouse model harboring the murine equivalent (Ano5 p.T491F) of a GDD-causing mutation identified in a previously reported patient. Skeletal phenotyping by contact radiography, μCT and undecalcified histomorphometry was performed in male mice, heterozygous and homozygous for the mutation, at the ages of 12 and 24 weeks. These mice did not display alterations of skeletal microarchitecture or mandible morphology. The results were confirmed in female mice and animals derived from a second, independent clone. Finally, no skeletal phenotype was observed in mice lacking ~40% of their gene due to a frameshift mutation. Therefore, our results indicate that Ano5 is dispensable for bone homeostasis in mice, at least under unchallenged conditions, and that these animals may not present the most adequate model to study the physiological role of Anoctamin 5.
© 2020 The Authors.

References

PubMed