Bladder cancer (BC) is one of the most common cancers worldwide, with a high rate of recurrence and poor outcomes. High-mobility group nucleosome-binding domain 5 (HMGN5) is overexpressed in many cancers and could cause carcinogenesis in BC. By protein-protein-interaction (PPI) analysis, we found that heat shock protein 27 (Hsp27), also a crucial functional factor in BC carcinogenesis, is significantly related to HMGN5. Hsp27 is required for IL-6-mediated EMT via STAT3/Twist signaling in prostate cancer. Here, we hypothesize that HMGN5 may interact with Hsp27 to affect IL-6-induced EMT and invasion in BC via STAT3 signaling. In the present study, we found that HMGN5 and Hsp27 are highly expressed in BC tissues and positively correlated with each other. HMGN5 interacts with Hsp27 , to modulate the cell invasion and EMT in BC. Moreover, HMGN5 could modulate IL-6-Hsp27-induced EMT and invasion in BC cells by regulating STAT3 phosphorylation and STAT3 targeting of the Twist promoter. HMGN5 interacts with Hsp27 to promote tumor growth in a human BC xenograft model in nude mice. In summary, HMGN5 interacts with Hsp27 to promote IL-6-induced EMT, therefore promoting invasion in BC and contributing to the progression of BC.

References

PubMed