Carfentanil is an ultra-potent opioid with an analgesic potency 10,000 times that of morphine but has received little scientific investigation. In the present study, the human cytochrome P450 (CYP) isozymes catalyzing the oxidative metabolism of carfentanil were investigated. Using UHPLC-HRMS, Michaelis-Menten kinetics of formation for three major metabolites norcarfentanil (M1), pharmaceutical active metabolite 4-[(1-oxopropyl)phenylamino]-1-(2-hydroxyl-2-phenylethyl)-4-piperidinecarboxylic acid methyl ester (M11), and 4-[(1-oxopropyl)phenylamino]-1-(2-oxo-2-phenylethyl)-4-piperidinecarboxylic acid methyl ester (M15) were determined. Isozymes catalyzing the formation of the low abundant, highly active metabolite 1-[2-(2-hydroxylphenyl)ethyl]-4-[(1-oxopropyl)phenylamino]-4-piperidinecarboxylic acid methyl ester (M13) were also identified. Selective P450 inhibition studies with pooled human liver microsomes (HLMs) and recombinant CYP isozymes suggested that metabolites M1, M11, and M15 were predominantly formed by isozyme CYP3A5, followed by CYP3A4. Isozymes CYP2C8 and CYP2C9 also made contributions but to a much lesser extent. Highly potent metabolite M13 was predominantly formed by isozyme CYP2C9, followed by CYP2C8. These findings indicate that CYP3A5, CYP3A4, CYP2C8 and CYP2C9 play a major role in the transformation of carfentanil to M1 (norcarfentanil), M11, M13 and M15 through N-dealkylation of piperidine ring, hydroxylation of phenethyl group and ketone formation on phenethyl linker by human liver micrsomes.
Copyright © 2021. Published by Elsevier B.V.

Author