Monoclonal antibody (mAb) based therapies may provide a valuable new treatment modality for acute and chronic lung diseases, including asthma, respiratory infections, and lung cancer. Currently mAbs are delivered via systemic administration routes, but direct delivery to the lungs via the inhaled route could provide higher concentrations at the site of disease and reduced off-target effects. Though lyophilized mAbs may be reconstituted and delivered to the lungs using nebulizers, dry powder inhalers provide a more patient-friendly delivery method based upon their fast administration time and portability. However, particle engineering processes required to prepare respirable dried powders for DPI delivery involve multiple potential stressors for mAbs, which have not been fully explored. In this study, a systematic examination of various aspects of the particle engineering process (atomization, freezing, drying, and storage) was performed to further understand their impact on mAb structure and aggregation. Using anti-streptavidin IgG1 as a model mAb, atomization settings were optimized using a design of experiments approach to elucidate the relationship between feed flow rate, formulation solid content, and atomization airflow rate and protein structural changes and aggregation. The optimized atomization conditions were then applied to spray drying and spray freezing drying particle engineering processes to determine the effects of freezing and drying on IgG1 stability and aerosol performance of the powders. IgG1 was found to be particularly susceptible to degradation induced by the expansive air-ice interface generated by spray freeze drying and this process also produced powders that exhibited decreased storage stability. This study further delineates the design space for manufacturing of respirable biologic therapies and is intended to serve as a roadmap for future development work.
Copyright © 2021. Published by Elsevier Inc.

Author